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Abstract—This paper examines saturated control of a class
of uncertain, nonlinear Euler-Lagrange systems which in-
cludes time-varying and nonlinearly parametrized functions
with bounded disturbances using a continuous control law
utilizing smooth saturation functions. The bounds on the control
are known a priori and can be adjusted by changing the
feedback gains. The saturated controller is shown to guarantee
semi-global asymptotic tracking despite uncertainties in the
dynamics.

I. INTRODUCTION

Robust, high gain controllers [1]–[3] have been shown
to be effective for systems with unstructured parametric
uncertainties and bounded disturbances. Most high gain
control techniques do not take into account the fact that
the commanded input (a function of the system states) may
require more force than is physically possible (e.g., due to
large initial condition offsets, an aggressive desired trajec-
tory, or some other disturbance). Because degraded control
performance and the potential risk of thermal or mechanical
failure can occur when unmodeled actuator constraints are
violated, control schemes which ensure performance while
actuator limits are not surpassed are motivated.

A significant amount of previous work on the design of
controllers with bounded inputs has targeted the set-point
(regulation) control problem [4]–[9]. This paper will focus
on bounded input controllers for the more general tracking
control problem. In [10], the authors propose an adaptive,
full-state feedback controller to produce semi-global asymp-
totic tracking while compensating for unknown parametric
uncertainties. The authors of [11] were able to extend the
work of [6] to the tracking control problem by utilizing a
general class of saturation functions to achieve a global uni-
form asymptotic tracking result for a linearly parametrizable
system. Anti-windup schemes have been developed [12] to
compensate for saturation nonlinearities in nonlinear Euler-
Lagrange systems. To compensate for uncertain dynamics,
Alvarez-Ramirez, et. al in [13] included an additional sat-
urated integral term yielding a semi-global stability result.
More recently in [14], a saturated PID framework controller
was proposed which used sigmoidal functions to achieve a
global asymptotic tracking result.

While each of the mentioned contributions propose satu-
rated controllers with asymptotic stability results, the meth-
ods do not comment on their application to systems with both
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uncertain dynamics and additive unmodeled disturbances.
General control literature suggests that robust techniques
(such as high gain, sliding mode, or variable structure
control) have successfully been developed to accommodate
for parametric uncertainties and disturbances in the system
[15], [16]. To address the inherent actuator saturation risks of
robust controllers, Hong and Yao proposed the development
of a continuous saturated adaptive robust control (SARC)
algorithm [17] capable of achieving an ultimately bounded
tracking result in the presence of an external disturbance.
Corradini, et. al proposed a discontinuous saturated sliding
mode controller [18] for linear plant models in the presence
of bounded matched uncertainties to achieve a semi-global
tracking result. In [19], two discontinuous control algorithms
are proposed for robust stabilization of spacecraft in the
presence of control input saturation, parametric uncertainty
and external disturbances using a discontinuous variable
structure control design. In [20], the authors develop a
SARC controller a using discontinuous projection method
to achieve globally bounded tracking of artificial muscles.
However, while each of the previous results are able to ad-
dress uncertain nonlinear systems with additive disturbances
using a saturated control scheme, the use of discontinuous
signals introduces limitations such as the demand for infinite
bandwidth and potential chattering and motivates the design
of other saturated robust control techniques. Robust control
designs utilizing nested saturation functions for uncertain
feedforward nonlinear systems [21]–[23] have guaranteed
global asymptotic stability despite unmodeled dynamic dis-
turbances; however, attempts at designing a transformation to
convert an Euler-Lagrange system into a forward-complete
system have required model knowledge [24]. This implies
that methods developed for feedforward systems may not be
applicable to uncertain Euler-Lagrange dynamics.

To overcome the limitations of sliding mode controllers, a
control strategy called the robust integral of the sign of the
error (RISE) was developed in [25] that contains a unique
integral signum term resulting in a continuous solution which
can accommodate for sufficiently smooth bounded distur-
bances and unstructured parametric uncertainty to achieve
an asymptotic tracking result under the assumption that the
disturbances are C2 with bounded time derivatives. However,
the RISE controller is also considered a high gain strategy
and it too suffers from the risk of potentially requiring large
control requirements which can lie outside the range of
actuation limits.

This paper focuses on a new RISE strategy which consists
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of a saturated, continuous tracking controller for a class
of uncertain, nonlinear systems which includes time-varying
and nonlinearly parametrized functions and unmodeled dy-
namic effects. Unlike previous results that apply nonlinear
combinations of saturated functions for stabilizing the closed
loop system, the proposed controller is based on smooth
hyperbolic functions that can easily be implemented in real-
time applications. The bound on the control is known a
priori and can be adjusted by adjusting the feedback gains.
The saturated controller is shown to guarantee semi-global
asymptotic tracking despite parametric uncertainties (with the
exception of the inertia matrix) and additive disturbances, and
without the use of acceleration measurements.

II. DYNAMIC SYSTEM

Consider a class of nonlinear Euler-Lagrange systems of
the form:

M (q) q̈ + Vm (q, q̇) q̇ +G (q) + F (q̇) + d (t) = u (t) (1)

where M (q) ∈ Rn×n denotes a generalized, state-dependent
inertia matrix, Vm (q, q̇) ∈ Rn×n denotes a generalized
centripetal-Coriolis matrix, G (q) ∈ Rn denotes a generalized
gravity vector, F (q̇) ∈ Rn denotes generalized friction,
d (t) ∈ Rn denotes a general nonlinear disturbance (e.g.,
unmodeled effects), q (t) , q̇ (t) , q̈ (t) ∈ Rn denote the gen-
eralized states and u (t) ∈ Rn denotes the generalized
control force. The subsequent development is based on
the assumptions that q (t) and q̇ (t) are measurable, and
Vm (q, q̇), G (q), F (q̇), d (t) are unknown. In addition, the
following assumptions will be exploited:

Assumption 1. The inertia matrix M (q) is symmet-
ric positive-definite, and satisfies the following inequality
∀y (t) ∈ Rn :

m ‖y‖2 ≤ yTMy ≤ m̄ (q) ‖y‖2 (2)

where m ∈ R is a known positive constant, m̄ (q) ∈ R
is a known positive function, and ‖·‖ denotes the standard
Euclidean norm.

Assumption 2. The nonlinear disturbance term and its first
two time derivatives (i.e., d (t) , ḋ (t) , d̈ (t)) are bounded by
known constants.

Assumption 3. The desired trajectory qd (t) ∈ Rn is de-
signed such that qd (t) , q̇d (t) , q̈d (t) , q

(3)
d (t) , q

(4)
d (t) ∈ L∞.

Assumption 4. The inertia matrix and its inverse are as-
sumed to be known.

Remark 1. To aid the subsequent control design and analysis,
the vector Tanh (·) ∈ Rn and the matrix Cosh (·) ∈ Rn×n
are defined as follows

Tanh (ξ) , [tanh (ξ1) , ..., tanh (ξn)]
T (3)

Cosh (ξ) , diag {cosh (ξ1) , ..., cosh (ξn)} (4)

where ξ = [ξ1, ..., ξn]
T ∈ Rn. Based on the definition of (3),

the following inequalities hold ∀ξ ∈ Rn [10]:

‖ξ‖2 ≥
n∑
i=1

ln (cosh (ξi)) ≥
1

2
tanh2 (‖ξ‖)

‖ξ‖ > ‖Tanh (ξ)‖ , ‖Tanh (ξ)‖2 ≥ tanh2 (‖ξ‖)

ξTTanh (ξ) ≥ TanhT (ξ)Tanh (ξ) . (5)

III. CONTROL OBJECTIVE

The objective is to design an amplitude-limited, continuous
controller which ensures the system state q (t) tracks a
desired time-varying trajectory qd (t) despite system uncer-
tainty and additive bounded disturbances. To quantify the
control objective, a tracking error denoted e1 (q, t) ∈ Rn is
defined as

e1 , qd − q. (6)

Two filtered tracking errors, denoted
e2 (e1, ė1, ef , t) , r (e2, ė2, t) ∈ Rn, are defined as

e2 , ė1 + α1Tanh (e1) + Tanh (ef ) , (7)
r , ė2 + α2Tanh (e2) + α3e2 (8)

where α1, α2, α3 ∈ R denote constant positive control gains,
Tanh (·) was defined in (3), and ef (e1, e2) ∈ Rn is an
auxiliary signal whose dynamics are given by

ėf ,Cosh
2 (ef ){−γ1e2 + Tanh (e1)− γ2Tanh (ef )} (9)

where ef (0, 0) = 0, γ1, γ2 ∈ R are constant positive control
gains and Cosh(·) was defined in (4). The auxiliary signal
r is introduced to facilitate the stability analysis and is not
used in the control design since the expression in (8) depends
on the unmeasurable generalized state q̈ (t).

IV. CONTROL DEVELOPMENT

An open-loop tracking error can be obtained by premul-
tiplying the filtered tracking error in (8) by M (q), and
substituting from (1), (6), (7), and (9) to yield

Mr = S +R− u (t)−Mγ1e2 (10)

where the auxiliary functions S (e1, e2, ef , t) ∈ Rn and
R (qd, q̇d, q̈d, t) ∈ Rn are defined as

S , Mq̈d + Vmq̇ +G+ F − Sd (11)
+Mα1Cosh

−2 (e1) [e2 − α1Tanh (e1)− Tanh (ef )]

−Mγ2Tanh (ef ) +Mα2Tanh (e2)

+Mα3e2 +MTanh (e1) ,

R , Sd + d (12)

and a desired trajectory dependent auxiliary term,
Sd (qd, q̇d, q̈d, t) ∈ Rn, defined as

Sd ,Mdq̈d + Vmdq̇d +Gd + Fd, (13)

is added and subtracted. In (13), Md, Vmd, Gd, Fd denote
M (qd) ∈ Rn×n, Vm (qd, q̇d) ∈ Rn×n, G (qd) ∈ Rn,
F (q̇d) ∈ Rn, respectively.
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Injecting a saturation term is the obvious way to limit the
control authority below an a priori limit; however, difficulty
arises in the stability analysis and the development of the er-
ror signals when nonsmooth saturation functions are included
in the control signal. Based on the form of (10) and through
an iterative stability analysis, the continuous controller, u (t),
is designed as

u , γ1Tanh (v) (14)

where v (e1, e2) ∈ Rn is the generalized Filippov solution to
the following differential equation

v̇ = Cosh2 (v) [Mα2Tanh (e2) +Mα3e2 + βsgn (e2)

−α1Cosh
−2 (e1) e2 − Ṁe2 + γ2Me2], (15)

v (0) = 0, where β ∈ R is a positive constant control gain
and sgn (·) is defined ∀ξ ∈ Rm =

[
ξ1 ξ2 ... ξm

]T
as

sgn (ξ) ,
[
sgn (ξ1) sgn (ξ2) ... sgn (ξm)

]T
.

Using Filippov’s theory of differential inclusions [26]–
[29], the existence of solutions can be established
for v̇ ∈ K [h1] (v), where h1 (e2, t) ∈ Rn is
defined as the right-hand side of v̇ in (15) and
K [h1] ,

⋂
δ>0

⋂
µSm=0

coh1 (B (v, δ)− Sm), where
⋂

µSm=0

denotes the intersection of all sets Sm of Lebesgue mea-
sure zero, co denotes convex closure, and B (v, δ) =
{ς ∈ Rn | ‖v − ς‖ < δ} [30], [31]. The differential equation
given in (15) is continuous except for the Lebesgue measure
zero set of times t ∈ [t0, tf ] when e2 (e1, ė1, t) = 0. Hence,
the set of time-instances for which v̇ (e2, t) is not defined
is Lebesgue negligible. The absolutely continuous solution
v (e2, t) = v (e2 (t0) , t0) +

´ t
t0
v̇dt does not depend on the

value of v̇ on a Lebesgue negligible set of time-instances
[32].

The derivative of (14) is then given by u̇ (e1, e2, t) ∈ Rn,
defined as

u̇ = Mγ1α2Tanh (e2) +Mγ1α3e2 + γ1βsgn (e2) (16)
−γ1α1MCosh−2 (e1) e2 − γ1Ṁe2 + γ1γ2Me2.

The closed-loop tracking error system can be developed
by taking the time derivative of (10), substituting (16), and
by adding and subtracting Tanh (e2) and e2 to yield

Mṙ = −1

2
Ṁr + Ñ +Nd −Mγ1r

−γ1βsgn (e2)− Tanh (e2)− e2 (17)

where Ñ (e1, e2, r, ef ) ∈ Rn and Nd

(
qd, q̇d, q̈d, q

(3)
d , t

)
∈

Rn are defined as

Ñ , −1

2
Ṁr + ˙̄S + Tanh (e2) + e2 (18)

and
Nd , Ṙ. (19)

In (18), ˙̄S (e1, e2, ef , t) ∈ Rn is defined as ˙̄S , Ṡ −
α1γ1MCosh−2 (e1) e2 +γ1γ2Me2 where the last two terms

are from (16) and cancel with inverse terms inside of Ṡ
(which arise due to Tanh (ef ) terms inside S) to yield ˙̄S free
of direct use of the gain parameter γ1. Remaining γ1 terms
in ˙̄S are encapsulated within Tanh (·) functions and thus can
be upper bounded by 1. The structure of (17) is motivated by
the desire to segregate terms that can be upper bounded by
state-dependent terms and terms that can be upper bounded
by constants. By applying the Mean Value Theorem, an upper
bound can be developed for the expression in (18) [25]:∥∥∥Ñ∥∥∥ ≤ ρ (‖x‖) ‖x‖ (20)

where the bounding function ρ (·) ∈ R is a positive, globally
invertible function, and x (e1, e2, r, ef ) ∈ R5n is defined as

x , [TanhT (e1) , TanhT (e2) , eT2 ,

rT , TanhT (ef )]T . (21)

From Assumptions 2 and 3, the following inequality can be
developed based on the expression in (19):

‖Nd‖ ≤ ζNd1
,
∥∥∥Ṅd∥∥∥ ≤ ζNd2

(22)

where ζNd1
, ζNd2

∈ R, are known positive constants.
To facilitate the subsequent stability analysis, let γ1 be

selected as

γ1 ,
γa + γb
m

(23)

where γa, γb ∈ R are positive gain constants. Additionally,
let the auxiliary constant λ ∈ R be defined by

λ , min{α1 −
1

2
, 2α2 + α3,

α3 −
1

2
− γ21ζ

2

4
, γ2 −

1

ζ2
, γa} (24)

where ζ ∈ R is a known positive adjustable gain parameter.
Provided the control gains γ1, γ2, α1, α2, α3 are selected as

α1 >
1

2
, α2 > 0, α3 >

1

2
+
γ21ζ

2

4
, γ2 >

1

ζ2
(25)

then λ in (24) is a positive adjustable constant. In addition
to the sufficient gain conditions in (25), β and γ1 should be
selected as

βγ1 > ζNd1
+
ζNd2

α3
(26)

to facilitate the subsequent stability analysis. It can be noted
that the sufficient condition on β is related to the bound on
the disturbance conditions given in Assumption 2. Let the
vector z (e1, e2, r, ef ) ∈ R4n be defined as

z ,
[
eT1 , e

T
2 , r

T , TanhT (ef )
]T

(27)

and the vector y (e1, e2, r, ef , P ) ∈ R4n+1 be defined as

y ,
[
zT

√
P
]T
. (28)
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In (28), the auxiliary function P (e2, t) ∈ R is defined as
the generalized Filippov solution to the following differential
equation

Ṗ , −rT (Nd − βγ1sgn (e2)) , (29)

P (e2 (t0) , t0) , βγ1

n∑
i=1

|e2i (t0)| − e2 (t0)
T
Nd (t0)

where the subscript i = 1, 2, ..., n denotes the ith ele-
ment of the vector. Similar to the development in (15),
existence of solutions for P (e2, t) can be established us-
ing Filippov’s theory of differential inclusions for Ṗ ∈
K [h2] (P ), where h2 (e2, r, t) ∈ R is defined as h2 ,
−rT (Nd − βγ1sgn (e2)). Provided the sufficient condition
for β in (25) is satisfied, P (e2, t) ≥ 0 (See the Appendix
for details).

V. STABILITY ANALYSIS

Theorem. Given the dynamics in (1), the controller given
by (14) and (15) ensures semi-global asymptotic tracking in
the sense that

‖e1 (t)‖ → 0 as t→∞ ∀y ∈ D

such that D is a domain defined as

D ,
{
y ∈ R4n+1 | tanh (‖y‖) ≤ ρ−1

(
2
√
λγb

)}
, (30)

provided the sufficient conditions in (25) and (26) are satis-
fied.

Proof: Let VL (y, t) : D × [0,∞) → R be a positive-
definite function defined as

VL ,
n∑
i=1

ln (cosh (e1i)) +

n∑
i=1

ln (cosh (e2i)) +
1

2
eT2 e2

+
1

2
rTMr +

1

2
TanhT (ef )Tanh (ef ) + P (31)

where e1i, e2i denote the i-th element of the vector e1 (t)
and e2 (t), respectively, and which satisfies the following
inequalities:

φ1 (y) ≤ VL (t) ≤ φ2 (y) . (32)

Based on (5) and (31), the continuous positive defi-
nite functions φ1 (y) , φ2 (y) ∈ R in (32) are defined
as φ1 (y) , 1

2min {1,m} tanh
2 (‖y‖) and φ2 (y) ,

max
{

1
2m̄ (q) , 32

}
‖y‖2, where m and m̄ (q) were introduced

in (2).
Under Filippov’s framework, a generalized Lyapunov sta-

bility theory can be used to establish strong stability of the
closed-loop system ẏ = h3 (y, t), where h3 (y, t) ∈ R4n+1

denotes the right-hand side of the closed-loop error signals.
The time derivative of (31) exists almost everywhere (a.e.),
i.e., for almost all t ∈ [t0, tf ], and V̇ (y, t)

a.e.
∈ ˙̃V (y, t) where

˙̃VL =
⋂

ξ∈∂VL(y)

ξTK

[
ėT1 ėT2 ṙT ėTf

1

2
P−

1
2 Ṗ 1

]T
,

and ∂V is the generalized gradient of V (y, t) [33]. Since
VL (y) is a Lipschitz continuous regular function,

˙̃VL ⊂ ∇V TK
[
ėT1 ėT2 ṙT ėTf

1

2
P−

1
2 Ṗ 1

]T
(33)

where

∇V , [TanhT (e1) ,
(
TanhT (e2) + eT2

)
, rTM,

TanhT (ef )Cosh−2 (ef ) , 2P
1
2 ,

1

2
rT Ṁr]T .

Using the calculus for K [·] from [31], and substituting
(6)-(9), (16), and (17) into (33), yields

˙̃VL ⊂ rT
[
−1

2
Ṁr + Ñ +Nd −Mγ1r − Tanh (e2)− e2

]
−rT [γ1βK [sgn (e2)]]

+TanhT (e1) [e2 − α1Tanh (e1)− Tanh (ef )]

+TanhT (e2) [r − α2Tanh (e2)− α3e2]

+eT2 [r − α2Tanh (e2)− α3e2]

+TanhT (ef ) [−γ1e2 + Tanh (e1)]

+TanhT (ef ) [−γ2Tanh (ef )] + Ṗ +
1

2
rT Ṁr (34)

where K [sgn(e2)] = SGN (e2) [31] such that
SGN (e2i) = 1 if e2i > 0, [−1, 1] if e2i = 0, and
−1 if e2i < 0. Substituting (29), canceling common terms
and rearranging the resulting expression yields

˙̃VL
a.e.
= −α1Tanh

T (e1)Tanh (e1)−Mγ1r
T r

−α2Tanh
T (e2)Tanh (e2)− α3e

T
2 e2

−γ2TanhT (ef )Tanh (ef ) + rT Ñ

+TanhT (e1) e2 − TanhT (e2)α3e2

−γ1TanhT (ef ) e2 − α2e
T
2 Tanh (e2) (35)

where the set in (34) reduces to the scalar equality in (35)
since the RHS is continuous a.e., i.e, the RHS is continuous
except for the Lebesgue measure zero set of times when
e2 (e1, ė1, t) = 0 [30], [32]. Utilizing Assumption 1 and the
definition of (8), (20), and (22), the expression in (35) can
be upper bounded as

˙̃VL
a.e.
≤ −α1 ‖Tanh (e1)‖2 − (2α2 + α3) ‖Tanh (e2)‖2

−α3 ‖e2‖2 − γ2 ‖Tanh (ef )‖2 −mγ1 ‖r‖2

+ρ ‖x‖ ‖r‖+ ‖Tanh (e1)‖ ‖e2‖
+γ1 ‖Tanh (ef )‖ ‖e2‖ . (36)

Applying applying Young’s Inequality, completing the
squares on r (t), and grouping terms, the expression in (36)
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can be upper bounded by

˙̃VL
a.e.
≤ −

(
α1 −

1

2

)
‖Tanh (e1)‖2

− (2α2 + α3) ‖Tanh (e2)‖2

−
(
α3 −

1

2
− γ21ζ

2

4

)
‖e2‖2

−
(
γ2 −

1

ζ2

)
‖Tanh (ef )‖2

−γa ‖r‖2 +
ρ2 (‖x‖) ‖x‖2

4γb
(37)

where the gain condition in (23) was applied. Provided the
sufficient conditions in (25) are satisfied the expression can
be rewritten as

˙̃VL
a.e.
≤ −

(
λ− ρ2 (‖x‖)

4γb

)
‖x‖2 (38)

where λ was defined in (24), and x was defined in (21).
The expression in (38) can be reduced by utilizing (21)

and (27) to yield

˙̃VL
a.e.
≤ −φ3 (‖z‖) ≤ −U (y) (39)

where φ3 (‖z‖) ∈ R is defined as φ3 ,(
λ− ρ2(‖x‖)

4γb

)
tanh2 (‖z‖) and U (y) , c · tanh2 (‖z‖)

for some positive constant c, is a continuous, positive
semi-definite function defined on D (defined in (30)).

The inequalities in (32) and (39) can be used to show
that VL ∈ L∞ in D, hence, e1, e2, r, ef ∈ L∞ in D. From
(3), Tanh (e1) , Tanh (e2) , Tanh (ef ) ∈ L∞ in D. Thus,
from (7) and (8), ė1, ė2 ∈ L∞ in D. From (14) and (5),
u (t) ∈ L∞ in D. Because e1, ė1∈ L∞, q, q̇ ∈ L∞ in D
from Assumption 3. From the above statements, (17) can be
used to show that ṙ ∈ L∞ in D. The definition in (9) shows
that ėf ∈ L∞in D. Thus, ż ∈ L∞ in D and it can be shown
that z is uniformly continuous (UC) in D. Since z is UC,
‖z‖ is also UC which implies that tanh (‖z‖) is UC. The
definitions of U (y) and z (t) can be used to prove that U (y)
is UC in D. Let S ⊂ D denote a set defined as

S,
{
y ∈ D | φ2 <

1

2
min {1,m}

(
ρ−1

(
2
√
λγb

))
2

}
. (40)

The region of attraction in (40) can be made arbitrarily large
to include any initial conditions by increasing the control
gain γb. From (39), tanh (‖z‖)→ 0 as t→∞∀y (0) ∈ S.
Based on the definition of z (t) in (27), it can be shown that

‖e1 (t)‖ → 0 as t→∞∀y (0) ∈ S.

Remark 2. An important feature of the controller given by
(14) is its applicability to the case where constraints exist on
the available control. Note that the control law is bounded
since an upper bound can be explicitly obtained as

‖u‖ ≤
√
n · γ1 (41)

where n denotes the degree of u.

VI. CONCLUSION

This paper provides a continuous saturated controller for
a class of uncertain nonlinear Euler-Lagrange systems which
includes time-varying and nonlinearly parametrized functions
and additive bounded disturbances. The bound on the control
is known a priori and can be adjusted by changing the
feedback gains. The saturated controller is shown to guaran-
tee semi-global asymptotic tracking despite uncertainties in
the dynamics using smooth hyperbolic functions without the
use of acceleration measurements. Future work will examine
extensions of the proposed saturated control scheme to the
output feedback problem and the inclusion of an uncertain
inertia matrix.

REFERENCES

[1] Z. Qu, Robust Control of Nonlinear Uncertain Systems. Wiley Inc.,
New-York, 1998.

[2] V. I. Utkin, Sliding Modes in Control and Optimization. Springer-
Verlag, 1992.

[3] J. Slotine and W. Li, Applied Nonlinear Control. Prentice Hall, 1991.
[4] R. Colbaugh, E. Barany, and K. Glass, “Global regulation of uncertain

manipulators using bounded controls,” in Proc. IEEE Int. Conf. Robot.
Autom., vol. 2, 1997, pp. 1148–1155.

[5] R. Kelly and V. Santibanez, “A class of global regulators with bounded
control actions for robot manipulators,” in Proc. IEEE Conf. Decis.
Control, vol. 3, 1996, pp. 3382–3387.

[6] A. Zavala-Rio and V. Santibanez, “A natural saturating extension
of the PD-with-desired-gravity-compensation control law for robot
manipulators with bounded inputs,” IEEE Trans. Robot., vol. 23, no. 2,
pp. 386–391, 2007.

[7] H. Yazarel, C. C. Cheah, and H. C. Liaw, “Adaptive SP-D control of
a robotic manipulator in the presence of modeling error in a gravity
regressor matrix: theory and experiment,” IEEE Trans. Robot. Autom.,
vol. 18, no. 3, pp. 373–379, 2002.

[8] Y. X. Su, D. Sun, L. Ren, and J. Mills, “Integration of saturated
PI synchronous control and PD feedback for control of parallel
manipulators,” IEEE Trans. Robot, vol. 22(1), pp. 202–207, 2006.

[9] V. Santibanez, R. Kelly, and M. Llama, “A novel global asymptotic
stable set-point fuzzy controller with bounded torques for robot
manipulators,” IEEE Trans. Fuzzy Syst., vol. 13, no. 3, pp. 362–372,
2005.

[10] W. E. Dixon, D. M. Dawson, F. Zhang, and E. Zergeroglu, “Global
exponential tracking control of a mobile robot system via a pe
condition,” in Proc. IEEE Conf. Decis. Control, Phoenix, Arizona,
December 1999, pp. 4822–4827.

[11] E. Aguinaga-Ruiz, A. Zavala-Rio, V. Santibanez, and F. Reyes, “Global
trajectory tracking through static feedback for robot manipulators with
bounded inputs,” IEEE Trans. Control Syst. Technol., vol. 17, no. 4,
pp. 934–944, 2009.

[12] F. Morabito, A. Teel, and L. Zaccarian, “Nonlinear antiwindup applied
to Euler-Lagrange systems,” Robotics and Automation, IEEE Transac-
tions on, vol. 20, no. 3, pp. 526–537, 2004.

[13] J. Alvarez-Ramirez, V. Santibanez, and R. Campa, “Stability of robot
manipulators under saturated PID compensation,” IEEE Trans. Control
Syst. Technol., vol. 16, no. 6, pp. 1333–1341, Nov. 2008.

[14] Y. Su, P. Muller, and C. Zheng, “Global asymptotic saturated PID
control for robot manipulators,” IEEE Trans. Control Syst. Technol.,
vol. 18, no. 6, pp. 1280–1288, 2010.

[15] C. Abdallah, D. Dawson, P. Dorato, and M. Jamshidi, “Survey of
robust control for rigid robots,” IEEE Control System Mag., vol. 11,
no. 2, pp. 24–30, 1991.

[16] K. Zhou and J. C. Doyle, Essentials of Robust Control. Prentice Hall,
1997.

[17] Y. Hong and B. Yao, “A globally stable high-performance adaptive
robust control algorithm with input saturation for precision motion
control of linear motor drive systems,” IEEE/ASME Trans. Mechatron.,
vol. 12, no. 2, pp. 198–207, 2007.

248



[18] M. Corradini, A. Cristofaro, and G. Orlando, “Robust stabilization
of multi input plants with saturating actuators,” IEEE Trans. Autom.
Control, vol. 55, no. 2, pp. 419–425, 2010.

[19] J. D. Boskovic, S.-M. Li, and R. K. Mehra, “Robust adaptive variable
structure control of spacecraft under control input saturation,” J. Guid.
Contr. Dynam., vol. 24(1), pp. 14–22, 2001.

[20] L. Zhang, J. Xie, and D. Lu, “Adaptive robust control of one-link
joint actuated by pneumatic artificial muscles,” in Proc. Conf. BioInfo.
Biomed. Eng., 2007, pp. 1185–1189.

[21] M. Arcak, A. Teel, and P. Kokotovic, “Robust nonlinear control of
feedforward systems with unmodeled dynamics,” Automatica, vol. 37,
no. 2, pp. 265–272, 2001.

[22] L. Marconi and A. Isidori, “Robust global stabilization of a class of
uncertain feedforward nonlinear systems,” Systems & Control Letters,
vol. 41, no. 4, pp. 281–290, 2000.

[23] G. Kaliora and A. Astolfi, “Nonlinear control of feedforward systems
with bounded signals,” Automatic Control, IEEE Transactions on,
vol. 49, no. 11, pp. 1975–1990, 2004.

[24] F. Mazenc and S. Bowong, “Tracking trajectories of the cart-pendulum
system,” Automatica, vol. 39, no. 4, pp. 677–684, 2003.

[25] B. Xian, D. M. Dawson, M. S. de Queiroz, and J. Chen, “A continuous
asymptotic tracking control strategy for uncertain nonlinear systems,”
IEEE Trans. Autom. Control, vol. 49, pp. 1206–1211, 2004.

[26] A. Filippov, “Differential equations with discontinuous right-hand
side,” Am. Math. Soc. Transl., vol. 42 no. 2, pp. 199–231, 1964.

[27] A. F. Filippov, Differential Equations with Discontinuous Right-hand
Sides. Kluwer Academic Publishers, 1988.

[28] G. V. Smirnov, Introduction to the theory of differential inclusions.
American Mathematical Society, 2002.

[29] J. P. Aubin and H. Frankowska, Set-valued analysis. Birkhäuser,
2008.

[30] D. Shevitz and B. Paden, “Lyapunov stability theory of nonsmooth
systems,” IEEE Trans. Autom. Control, vol. 39 no. 9, pp. 1910–1914,
1994.

[31] B. Paden and S. Sastry, “A calculus for computing Filippov’s differen-
tial inclusion with application to the variable structure control of robot
manipulators,” IEEE Trans. Circuits Syst., vol. 34 no. 1, pp. 73–82,
1987.

[32] R. Leine and N. van de Wouw, “Non-smooth dynamical systems,” in
Stability and Convergence of Mechanical Systems with Unilateral Con-
straints, ser. Lecture Notes in Applied and Computational Mechanics.
Springer Berlin / Heidelberg, 2008, vol. 36, pp. 59–77.

[33] F. H. Clarke, Optimization and nonsmooth analysis. SIAM, 1990.

VII. APPENDIX

Lemma 3. Given the differential equation in (29),
P (e2, t) ≥ 0 if β satisfies

βγ1 > ζNd1
+
ζNd2

α3
. (42)

Proof: By using (8), integrating by parts, and regrouping
yields
ˆ t

0

rT(τ) (Nd (τ)−βγ1sgn (e2 (τ))) dτ =

ˆ t

t0

α2Tanh
T (e2 (τ)) [Nd (τ)− βγ1sgn (e2 (τ))] dτ

+

ˆ t

t0

α3e
T
2 (τ) [Nd (τ)− βγ1sgn (e2 (τ))] dτ

−
ˆ t

t0

α3e
T
2 (τ)

[
1

α3

∂Nd (τ)

∂τ

]
dτ + eT2Nd (t) (43)

− eT2 (t0)Nd (t0)− βγ1
n∑
i=1

|e2i (t)|+ βγ1

n∑
i=1

|e2i (t0)| .

From (9) and (22), the expression in (43) can be upper
bounded byˆ t

0

rT(τ) (Nd (τ)−βγ1sgn (e2 (τ))) dτ ≤
ˆ t

t0

α2 ‖Tanh (e2 (τ))‖ [ζNd1
− βγ1] dτ

+

ˆ t

t0

α3 ‖e2 (τ)‖
[
ζNd1

+
ζNd2

α3
− βγ1

]
dτ

+ ‖e2 (t)‖ [ζNd1
− βγ1] + βγ1

n∑
i=1

|e2i (t0)|

− eT2 (t0)Nd (t0) . (44)

Thus, from (44), if β satisfies (42), thenˆ t

0

rT(τ) (Nd (τ)−βγ1sgn (e2 (τ))) dτ ≤

βγ1

n∑
i=1

|e2i (t0)| − eT2 (t0)Nd (t0) ≤ P (e2(t0), t0) . (45)

Integrating both sides of (29) yields

P (e2, t) = P (e2 (t0) , t0)

−
ˆ t

0

rT (τ) (Nd (τ)− βγ1sgn (e2 (τ))) dτ,

which indicates P (e2, t) ≥ 0 from (45).
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